ME 141 Engineering Mechanics

Lecture 6: Centroids and Centers of Gravity

Ahmad Shahedi Shakil

Lecturer, Dept. of Mechanical Engg, BUET

E-mail: <u>sshakil@me.buet.ac.bd</u>, <u>shakil6791@gmail.com</u> Website: sshakil.buet.ac.bd

Courtesy: Vector Mechanics for Engineers, Beer and Johnston

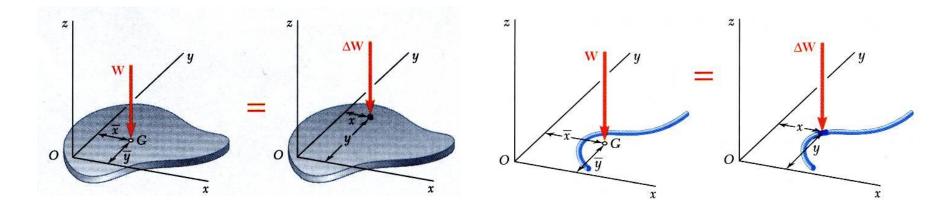
Introduction

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the *center of gravity* for the body.
- The *centroid of an area* is analogous to the center of gravity of a body. The concept of the *first moment of an area* is used to locate the centroid.
- Determination of the area of a *surface of revolution* and the volume of a *body of revolution* are accomplished with the *Theorems of Pappus-Guldinus*.

Center of Gravity of a 2D Body

• Center of gravity of a plate

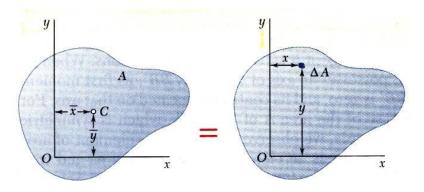
• Center of gravity of a wire



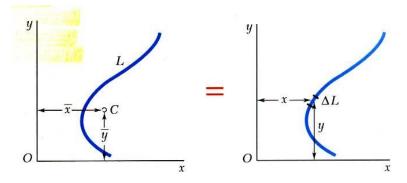
$$\sum M_{y}, \quad \overline{x}W = \sum x\Delta W$$
$$= \int x \, dW$$
$$\sum M_{x}, \quad \overline{y}W = \sum y\Delta W$$
$$= \int y \, dW$$

Centroids and First Moments of Areas and Lines

• Centroid of an area



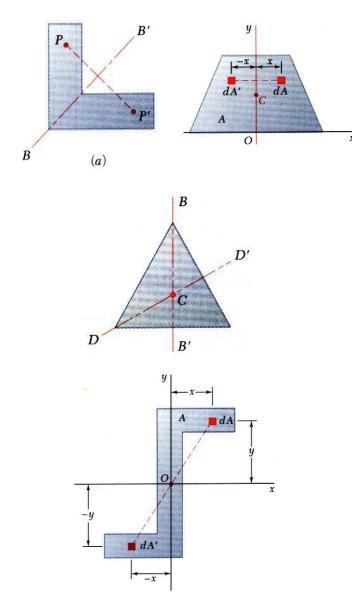
• Centroid of a line



 $\overline{x}W = \int x \, dW$ $\overline{x}(\gamma A t) = \int x (\gamma t) dA$ $\overline{x}A = \int x \, dA = Q_y$ = first moment with respect to y $\overline{y}A = \int y \, dA = Q_x$ = first moment with respect to x

$$\overline{x}W = \int x \, dW$$
$$\overline{x}(\gamma La) = \int x (\gamma a) dL$$
$$\overline{x}L = \int x \, dL$$
$$\overline{y}L = \int y \, dL$$

First Moments of Areas and Lines



- An area is symmetric with respect to an axis *BB*' if for every point *P* there exists a point *P*' such that *PP*' is perpendicular to *BB*' and is divided into two equal parts by *BB*'.
- The first moment of an area with respect to a line of symmetry is zero.
- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center *O* if for every element *dA* at (*x*, *y*) there exists an area *dA*' of equal area at (-*x*, -*y*).
- The centroid of the area coincides with the center of symmetry.

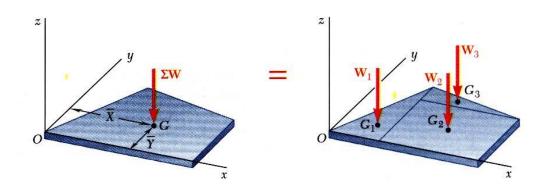
Centroids of Common Shapes of Areas

Shape	All and the state of the second state of the	x	y	Area
Triangular area	$\frac{1}{ \overline{y} } \xrightarrow{f \in C} \stackrel{h}{ } \xrightarrow{h}$		$\frac{h}{3}$	<u>bh</u> 2
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	$\begin{array}{c} \hline \\ \hline $	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area		$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$ \begin{array}{c} 0 \\ \rightarrow \overline{x} \\ \leftarrow \end{array} \begin{array}{c} + \overline{y} \\ 0 \\ \leftarrow a \\ \rightarrow \end{array} \begin{array}{c} + \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \end{array} \begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$
Semiparabolic area		$\frac{3a}{8}$	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$\begin{array}{c} c \\ \phi \\ \hline x \\ \hline x \\ \hline \end{array}$	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$O = \frac{x}{x} = \frac{x}{y} = \frac{x}{y}$	<u>3a</u> 4	<u>3h</u> 10	<u>ah</u> 3
General spandrel	$O \xrightarrow{y = kx^n} \overbrace{f}^h$	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$
Circular sector		$\frac{2r\sin\alpha}{3\alpha}$.	0	αr ²

Centroids of Common Shapes of Lines

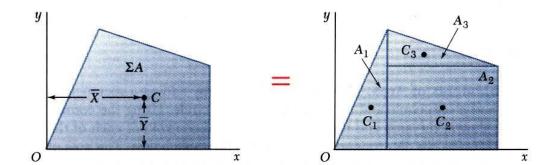
Shape		x	\overline{y}	Length
Quarter-circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$O \left \frac{\overline{y}}{\overline{x}} \right = \frac{C}{O} \left \frac{r'}{r'} \right $	0	$\frac{2r}{\pi}$	πr
Arc of circle	r r α α \overline{x}	$\frac{r\sin\alpha}{\alpha}$	0	2ar

Composite Plates and Areas

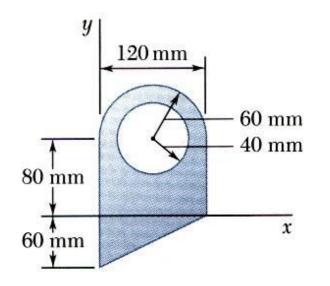


• Composite plates

$$\overline{X}\sum W = \sum \overline{x}W$$
$$\overline{Y}\sum W = \sum \overline{y}W$$



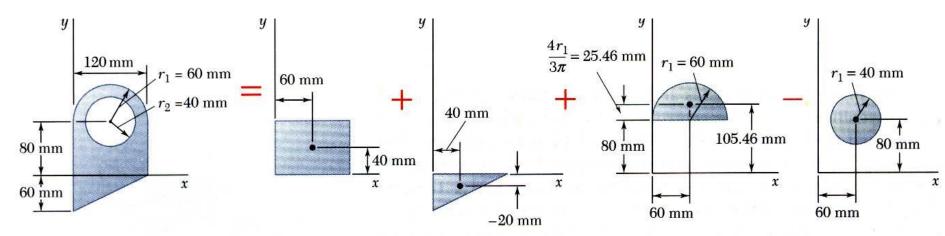
- Composite area
 - $\overline{X} \sum A = \sum \overline{x}A$ $\overline{Y} \sum A = \sum \overline{y}A$



For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.



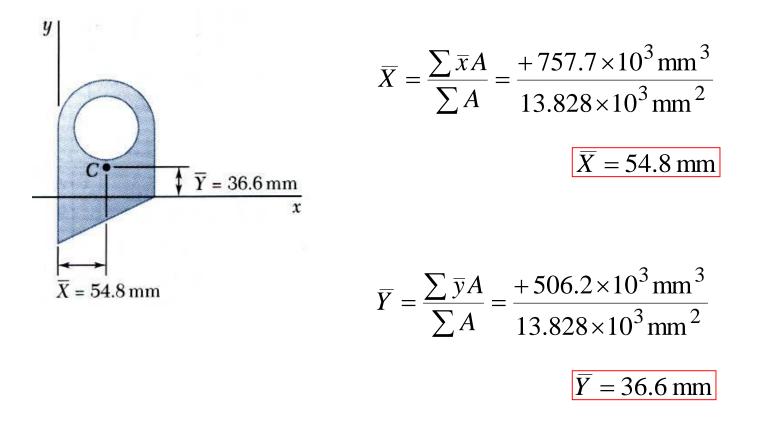
Component	A, mm ²	⊼ , mm	ӯ, mm	⊼A, mm³	<i>īyA</i> , mm³
Rectangle Triangle Semicircle Circle	$\begin{array}{l} (120)(80) = 9.6 \times 10^3 \\ \frac{1}{2}(120)(60) = 3.6 \times 10^3 \\ \frac{1}{2}\pi(60)^2 = 5.655 \times 10^3 \\ -\pi(40)^2 = -5.027 \times 10^3 \end{array}$	60 40 60 60	$40 \\ -20 \\ 105.46 \\ 80$	$\begin{array}{r} +576 \times 10^{3} \\ +144 \times 10^{3} \\ +339.3 \times 10^{3} \\ -301.6 \times 10^{3} \end{array}$	$\begin{array}{r} +384 \times 10^{3} \\ -72 \times 10^{3} \\ +596.4 \times 10^{3} \\ -402.2 \times 10^{3} \end{array}$
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

• Find the total area and first moments of the triangle, rectangle, and semicircle. Subtract the area and first moment of the circular cutout.

$$Q_x = +506.2 \times 10^3 \,\mathrm{mm}^3$$

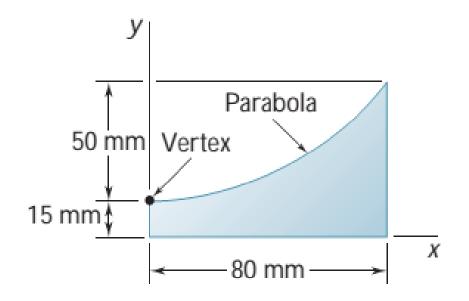
 $Q_y = +757.7 \times 10^3 \,\mathrm{mm}^3$

• Compute the coordinates of the area centroid by dividing the first moments by the total area.



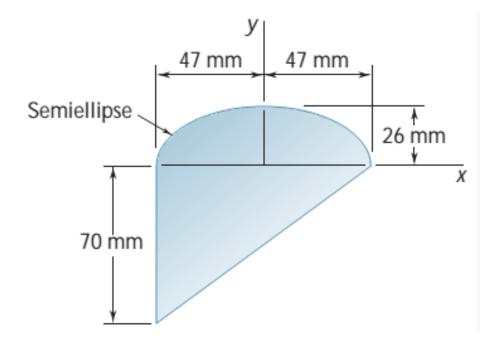
Prob 5.13

• Locate the centroid of the plane area shown.



Prob # 5.15

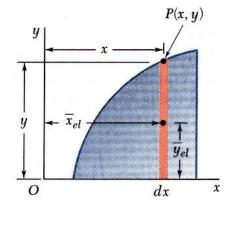
Locate the centroid of the plane area shown.



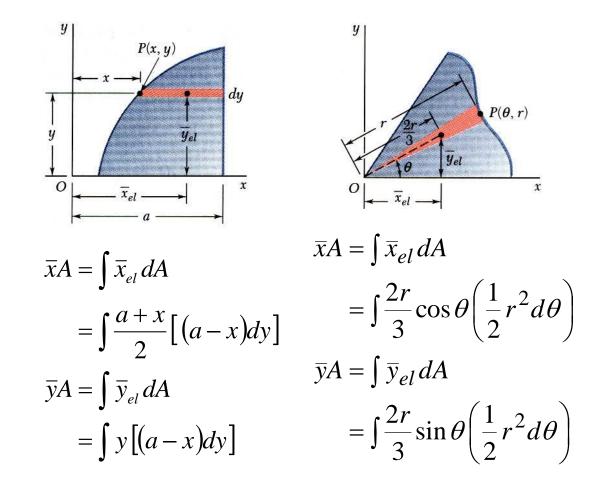
Determination of Centroids by Integration

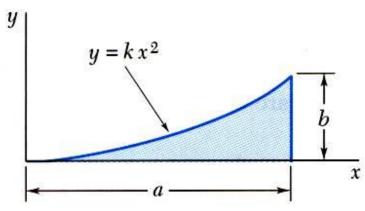
$$\overline{x}A = \int x dA = \iint x \, dx \, dy = \int \overline{x}_{el} \, dA$$
$$\overline{y}A = \int y \, dA = \iint y \, dx \, dy = \int \overline{y}_{el} \, dA$$

• Double integration to find the first moment may be avoided by defining *dA* as a thin rectangle or strip.



 $\overline{x}A = \int \overline{x}_{el} dA$ $= \int x (ydx)$ $\overline{y}A = \int \overline{y}_{el} dA$ $= \int \frac{y}{2} (ydx)$

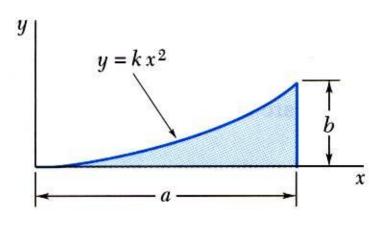




Determine by direct integration the location of the centroid of a parabolic spandrel.

SOLUTION:

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.



dA = y dx

 $\overline{y}_{el} = \frac{y}{2}$

 $\overline{x}_{el} = x$

y

SOLUTION:

• Determine the constant k.

$$y = k x^{2}$$
$$b = k a^{2} \implies k = \frac{b}{a^{2}}$$

$$y = \frac{b}{a^2} x^2$$
 or $x = \frac{a}{b^{1/2}} y^{1/2}$

• Evaluate the total area.

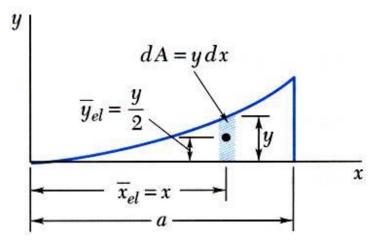
$$A = \int dA$$

$$= \int y \, dx = \int_{0}^{a} \frac{b}{a^2} x^2 \, dx = \left[\frac{b}{a^2} \frac{x^3}{3}\right]_{0}^{a}$$

$$=\frac{ab}{3}$$

x

• Using vertical strips, perform a single integration to find the first moments.



$$Q_{y} = \int \overline{x}_{el} dA = \int xy dx = \int_{0}^{a} x \left(\frac{b}{a^{2}} x^{2}\right) dx$$
$$= \left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}b}{4}$$
$$Q_{x} = \int \overline{y}_{el} dA = \int \frac{y}{2} y dx = \int_{0}^{a} \frac{1}{2} \left(\frac{b}{a^{2}} x^{2}\right)^{2} dx$$
$$= \left[\frac{b^{2}}{2a^{4}} \frac{x^{5}}{5}\right]_{0}^{a} = \frac{ab^{2}}{10}$$

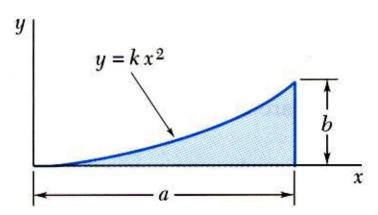
• Or, using horizontal strips, perform a single integration to find the first moments.

$$Q_{y} = \int \bar{x}_{el} dA = \int \frac{a+x}{2} (a-x) dy = \int_{0}^{b} \frac{a^{2}-x^{2}}{2} dy$$

$$= \frac{1}{2} \int_{0}^{b} \left(a^{2} - \frac{a^{2}}{b}y\right) dy = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \bar{y}_{el} dA = \int y(a-x) dy = \int y \left(a - \frac{a}{b^{1/2}}y^{1/2}\right) dy$$

$$= \int_{0}^{b} \left(ay - \frac{a}{b^{1/2}}y^{3/2}\right) dy = \frac{ab^{2}}{10}$$



• Evaluate the centroid coordinates.

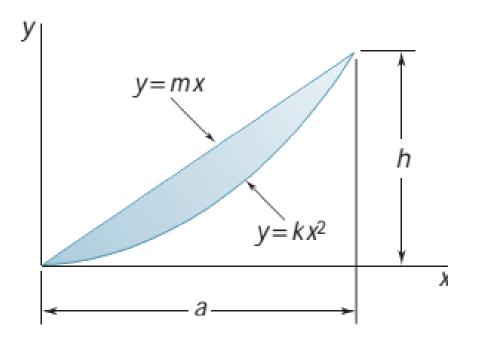
$$\overline{x}A = Q_y$$
$$\overline{x}\frac{ab}{3} = \frac{a^2b}{4}$$
$$\overline{x} = \frac{3}{4}a$$

$$\overline{y}A = Q_x$$
$$\overline{y}\frac{ab}{3} = \frac{ab^2}{10}$$

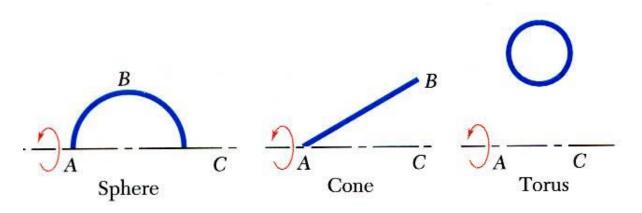
$$\overline{y} = \frac{3}{10}b$$

Prob# 5.36

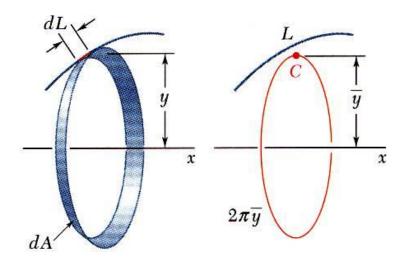
Determine by direct integration the centroid of the area shown. Express your answer in terms of a and h.



Theorems of Pappus-Guldinus



• Surface of revolution is generated by rotating a plane curve about a fixed axis.

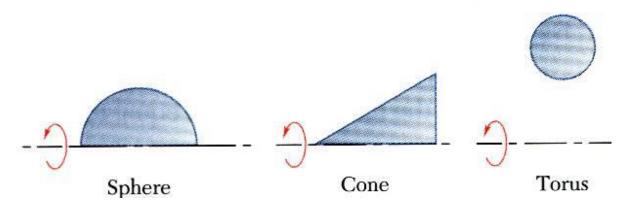


Theorem I

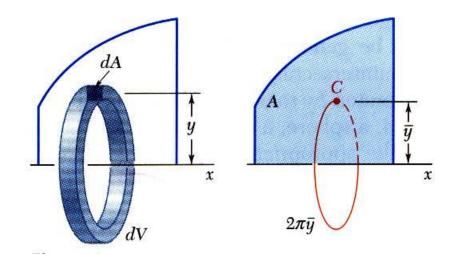
• Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$A = 2\pi \,\overline{y}L$$

Theorems of Pappus-Guldinus



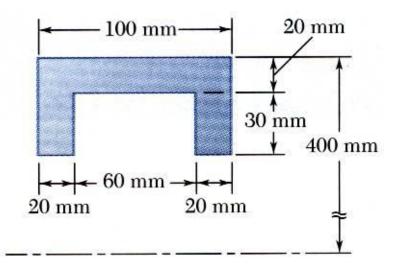
• Body of revolution is generated by rotating a plane area about a fixed axis.



Theorem II

• Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$V = 2\pi \,\overline{y}A$$



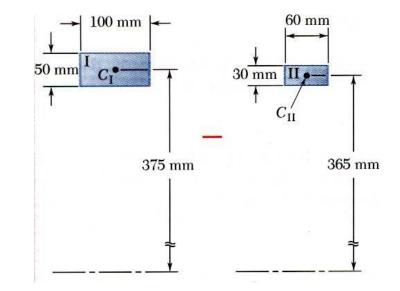
The outside diameter of a pulley is 0.8 m, and the cross section of its rim is as shown. Knowing that the pulley is made of steel and that the density of steel is $\rho = 7.85 \times 10^3 \text{ kg/m}^3$ determine the mass and weight of the rim.

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.

SOLUTION:

- Apply the theorem of Pappus-Guldinus to evaluate the volumes or revolution for the rectangular rim section and the inner cutout section.
- Multiply by density and acceleration to get the mass and acceleration.

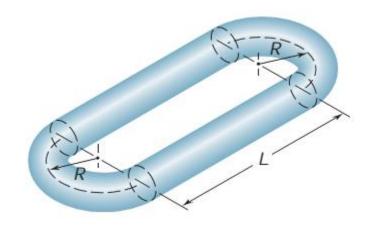


	Area, mm ²	<i>ī</i> y, mm	Distance Traveled by <i>C</i> , mm	Volume, mm ³
I II	$+5000 \\ -1800$	375 365	$2\pi(375) = 2356$ $2\pi(365) = 2293$	$(5000)(2356) = 11.78 \times 10^{6}$ $(-1800)(2293) = -4.13 \times 10^{6}$
			e - et el	Volume of rim = 7.65×10^6

$$m = \rho V = \left(7.85 \times 10^{3} \text{ kg/m}^{3}\right)\left(7.65 \times 10^{6} \text{ mm}^{3}\right)\left(10^{-9} \text{ m}^{3}/\text{mm}^{3}\right) \qquad m = 60.0 \text{ kg}$$
$$W = mg = \left(60.0 \text{ kg}\right)\left(9.81 \text{ m/s}^{2}\right) \qquad W = 589 \text{ N}$$

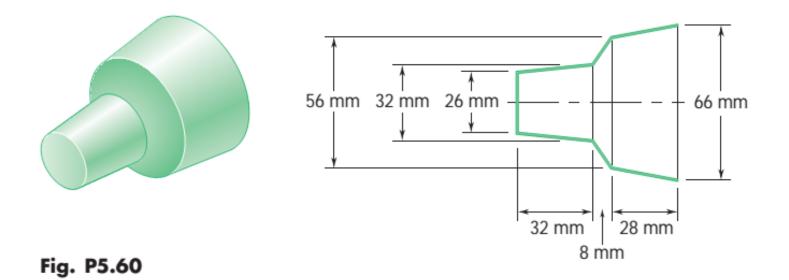
Prob# 5.56

Determine the volume and the surface area of the chain link shown, which is made from a 6-mm-diameter bar, if R = 10 mm and L = 30 mm

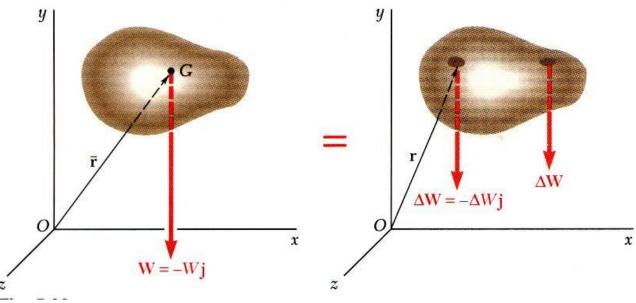


Prob # 5.60

The aluminum shade for the small high-intensity lamp shown has a uniform thickness of 1 mm. Knowing that the density of aluminum is 2800 kg/m^3 , determine the mass of the shade.



Center of Gravity of a 3D Body: Centroid of a Volume



• Center of gravity *G*

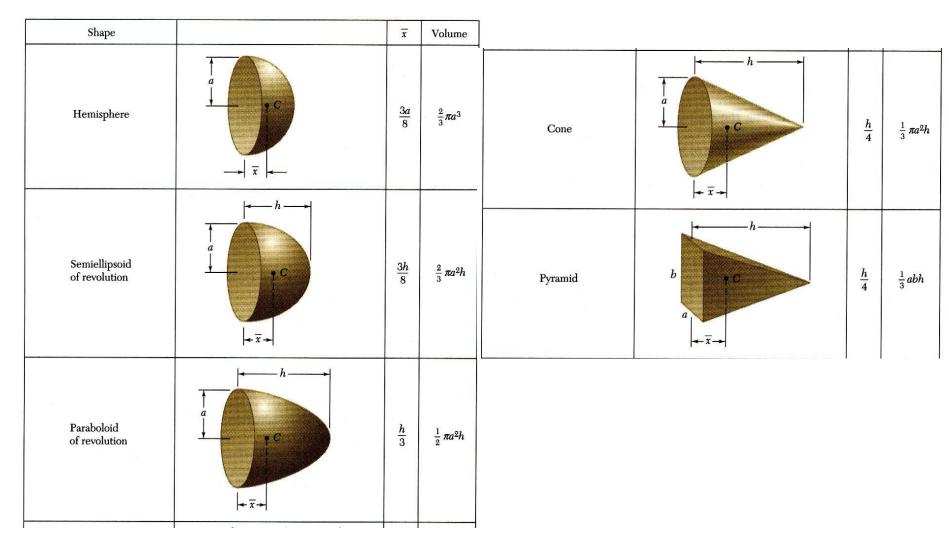
 $-W\,\vec{j} = \sum \left(-\,\Delta W\,\vec{j}\,\right)$

 $\vec{r}_G \times \left(-W \,\vec{j}\right) = \sum \left[\vec{r} \times \left(-\Delta W \,\vec{j}\right)\right]$ $\vec{r}_G W \times \left(-\vec{j}\right) = \left(\sum \vec{r} \Delta W\right) \times \left(-\vec{j}\right)$

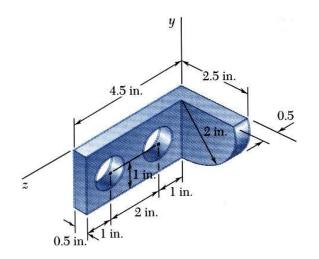
$$W = \int dW \qquad \vec{r}_G W = \int \vec{r} dW$$

- Results are independent of body orientation, $\overline{x}W = \int x dW \quad \overline{y}W = \int y dW \quad \overline{z}W = \int z dW$
- For homogeneous bodies, $W = \gamma V$ and $dW = \gamma dV$ $\overline{x}V = \int x dV$ $\overline{y}V = \int y dV$ $\overline{z}V = \int z dV$

Centroids of Common 3D Shapes



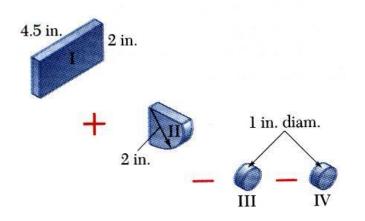
Composite 3D Bodies

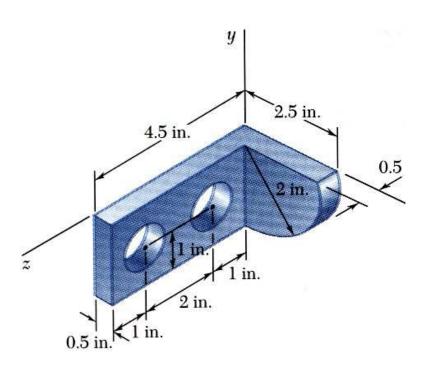


• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

 $\overline{X}\sum W = \sum \overline{x}W \quad \overline{Y}\sum W = \sum \overline{y}W \quad \overline{Z}\sum W = \sum \overline{z}W$

• For homogeneous bodies, $\overline{X}\sum V = \sum \overline{x}V$ $\overline{Y}\sum V = \sum \overline{y}V$ $\overline{Z}\sum V = \sum \overline{z}V$

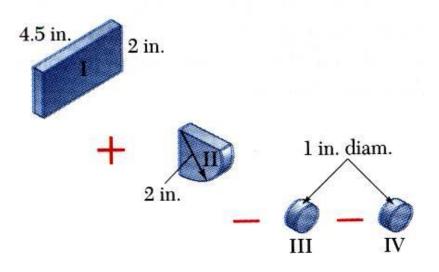


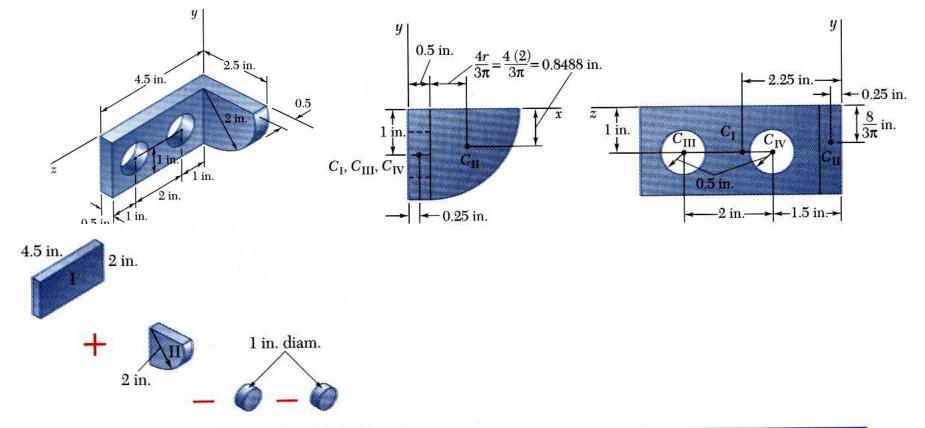


Locate the center of gravity of the steel machine element. The diameter of each hole is 1 in.

SOLUTION:

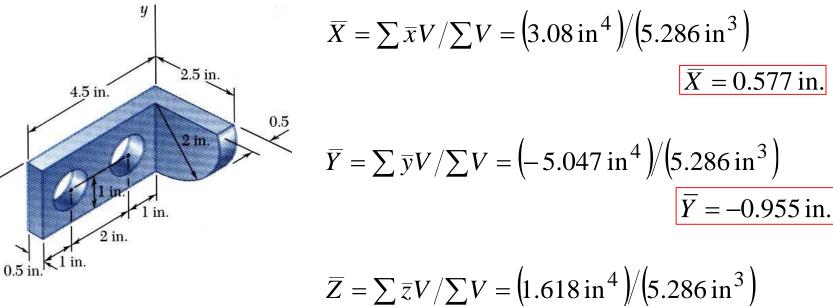
• Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.





	V, in ³	x, in.	<i>ӯ</i> , in.	z, in.	$\overline{x}V$, in ⁴	⊽ <i>V</i> , in⁴	<i>₹V</i> , in⁴
I II III IV	$\begin{array}{l} (4.5)(2)(0.5) = 4.5\\ \frac{1}{4}\pi(2)^2(0.5) = 1.571\\ -\pi(0.5)^2(0.5) = -0.3927\\ -\pi(0.5)^2(0.5) = -0.3927 \end{array}$	$\begin{array}{c} 0.25 \\ 1.3488 \\ 0.25 \\ 0.25 \end{array}$	-1 -0.8488 -1 -1	$2.25 \\ 0.25 \\ 3.5 \\ 1.5$	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	$10.125 \\ 0.393 \\ -1.374 \\ -0.589$
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z} V = 8.555$

	V, in ³	⊼ , in.	y , in.	₹, in.	$\overline{x}V$, in ⁴	<i>ӯV</i> , in⁴	Σ <i>V</i> , in⁴
I II III IV	$\begin{array}{l} (4.5)(2)(0.5) = 4.5\\ \frac{1}{4}\pi(2)^2(0.5) = 1.571\\ -\pi(0.5)^2(0.5) = -0.3927\\ -\pi(0.5)^2(0.5) = -0.3927 \end{array}$	$\begin{array}{c} 0.25 \\ 1.3488 \\ 0.25 \\ 0.25 \end{array}$	-1 -0.8488 -1 -1	$2.25 \\ 0.25 \\ 3.5 \\ 1.5$	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	$10.125 \\ 0.393 \\ -1.374 \\ -0.589$
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z}V = 8.555$

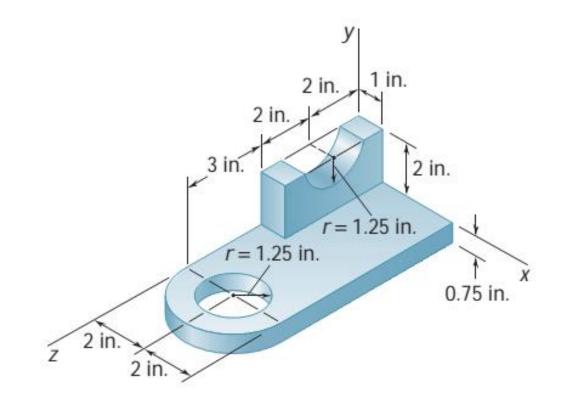


$$(5.286 \text{ in}^3)$$

 $\overline{Z} = 1.618 \text{ in.}$

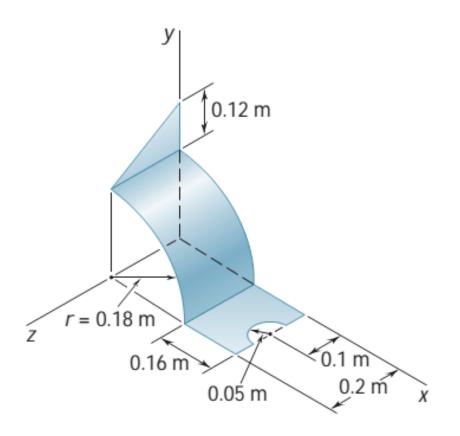
Prob # 5.100 and 5.103

For the machine element shown, locate y and z coordinates of the center of gravity.



Prob # 5.107

Locate the center of gravity of the sheet-metal form shown



Prob #5.115

Locate the center of gravity of the figure shown, knowing that it is made of thin brass rods of uniform diameter.

